

USDA, National Agricultural Statistics Service

Indiana Crop & Weather Report

USDA, NASS, Indiana Field Office 1435 Win Hentschel Blvd.

Suite 110 West Lafayette, IN 47906-4151 (765) 494-8371 nass-in@nass.usda.gov

CROP REPORT FOR WEEK ENDING JULY 25

AGRICULTURAL SUMMARY

Another week of high temperatures placed some stress on major field crops, especially in areas missed by scattered thunderstorms that moved across the state, according to the Indiana Field Office of USDA's National Agricultural Statistics Service. Rains have been spotty leaving some areas very dry while others have a surplus of moisture. Some operations are finishing up second cuttings of hay and some are already preparing for a third cutting. Some dairy operations are experiencing a reduction in milk production due to heat stress on the cows.

FIELD CROPS REPORT

There were 4.8 days suitable for field work. Ninetyone percent of the corn crop has silked compared with 49 percent last year and 73 percent for the 5-year average. Fourteen percent of the corn is in dough compared with 2 percent last year and 10 percent for the 5-year average. Corn condition is rated 62 percent good to excellent compared with 63 percent last year at this time.

Seventy-nine percent of the intended **soybean** acreage is **blooming** compared with 48 percent last year and 63 percent for the 5-year average. Forty-two percent of the soybean acreage is **setting pods** compared with 6 percent last year and 18 percent for the 5-year average. Soybean **condition** is rated 64 percent good to excellent, the same as last year.

Virtually all of the winter wheat acreage has been harvested. The second cutting of alfalfa hay is eighty-four percent complete compared with 81 percent last year and 84 percent for the 5-year average.

Major activities during the week included: scouting fields for insects and diseases, cutting hay, monitoring irrigation systems, applying herbicides and insecticides, attending county fairs, mowing roadsides and ditches and taking care of livestock.

LIVESTOCK, PASTURE AND RANGE REPORT

Pasture condition is rated 67 percent good to excellent compared with 70 percent last year. The high temperatures and humidity are placing stress on all livestock.

CROP PROGRESS

Released: July 26, 2010

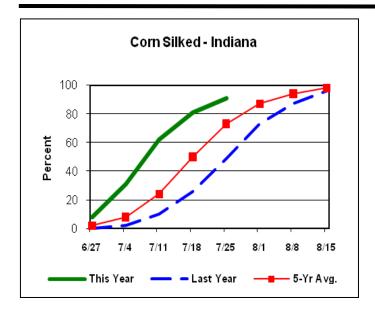
Vol. 60, WC072610

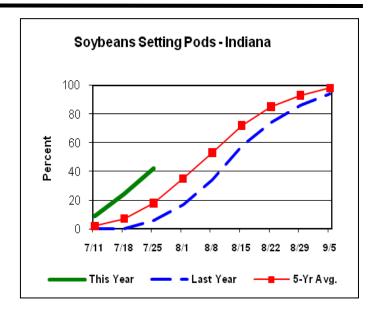
Crop	This Week	Last Week	Last Year	5-Year Avg.		
	Percent					
Corn Silked (Tasseled)	91	81	49	73		
Corn in Dough	14	NA	2	10		
Soybeans Blooming	79	65	48	63		
Soybeans Setting Pods	42	24	6	18		
Alfalfa, Second Cutting	84	73	81	84		

CROP CONDITION

Crop	Very Poor	Poor	Fair	Good	Excel- lent	
		Р	ercent			
Corn	3	9	26	46	16	
Soybean	2	8	26	47	17	
Pasture	1	6	26	49	18	

SOIL MOISTURE & DAYS SUITABLE FOR FIELDWORK


Soil Moisture	This Week	Last Week	Last Year						
	Percent								
Topsoil									
Very Short	2	3	2						
Short	18	21	18						
Adequate	72	66	62						
Surplus	8	10	18						
Subsoil									
Very Short	1	1	2						
Short	19	18	21						
Adequate	73	72	63						
Surplus	7	9	14						
Days Suitable	4.8	5.6	4.7						


CONTACT INFORMATION

- -- Greg Preston, Director
- -- Andy Higgins, Agricultural Statistician
- E-mail Address: nass-in@nass.usda.gov

http://www.nass.usda.gov/Statistics_by_State/Indiana/

Crop Progress

Other Agricultural Comments And News

Glyphosate Resistant Waterhemp in Indiana

Written by Chad Brabham and Bill Johnson. Article appears in the Pest & Crop, July 23, 2010 - Issue 17.

Horseweed, giant ragweed and common ragweed have been confirmed glyphosate-resistant in Indiana and now glyphosate-resistant waterhemp can be added to the list. In the summer of 2009, seeds of two suspected glyphosate-resistant waterhemp populations (WR1 and WR2) were collected from southwest Indiana soybean fields and screened for resistance in greenhouses at Purdue and Southern Illinois University-Carbondale. Plants ranging from 3 to 5 inches in height were sprayed with glyphosate at 0.75 and 2.25 lbs of ae/a. At 21 days after application (DAT) individual plants were rated as dead or alive and percent survival of the two suspect populations were compared to known resistant and susceptible biotypes.

Glyphosate has generally been an effective herbicide for control of waterhemp. However, control can be variable at times. In the known sensitive population, 0.75 lb ae/A of glyphosate killed 80% of the plants and 94% were killed with 2.25 lbs of glyphosate. The resistant biotype displayed some stunting and chlorosis, but only 10% were killed with either rate of glyphosate and 90% survived. The WR1 population had survival rates of 92% and 57% respectively, with the 0.75 and 2.25 lb rates. Percent survival in the WR2 population was 64% and 33%, respectively. Plants from WR1 and WR2 survived applications that controlled the susceptible biotype indicating glyphosate resistance is present in both populations. Further testing will be performed on future

generations to determine the inheritance and level of glyphosate-resistance in these particular populations.

Glyphosate can be used to effectively control glyphosate-susceptible waterhemp, but not glyphosate-resistant populations. Alternative methods will be needed to control glyphosate resistant populations. Researchers in Missouri and Illinois have isolated waterhemp populations that are resistant to glyphosate and PPO (Cobra/Flexstar), PSII (Sencor), and ALS (Classic/FirstRate) inhibiting herbicides. Weed Scientists sarcastically call these populations double, triple, or quadruple stacks!

The bottom line is that we now have glyphosate resistant waterhemp in Indiana. The populations discussed here are in Vigo county in the southwest part of the state. We have significant waterhemp infestations in southern Indiana, northwest Indiana and east central Indiana as well. It would not surprise us if eventually we have glyphosate resistant waterhemp populations in those areas as well if we don't change management tactics. For more information on control of glyphosate-resistant waterhemp please check out the extension publication Management of Waterhemp' and http://www.glyphosateweedscrops.org/. We would also like to thank Bryan and Julie Young at SIU for providing seed to use in our greenhouse screening experiments and for running additional screening experiments to confirm that our populations glyphosate resistant.

Weather Information Table

Week Ending Sunday, July 25, 2010

	Pa	st V	leek	Weat	ther Summary Data			Accumulation				
							A	April 1, 2010 through				
		Ai	r		Avg		Avg	July 25, 2010				
Station	<u>T</u>	'empe	erati	ıre	Preci	<u>-</u>	4 in		ipitat:	ion	GDD B	ase 50°1
							Soil					
	Hi	Lo	Avg	DFN	Total	Days	Temp	Total	DFN	Days	Total	DFN
Northwest (1)												
Chalmers_5W	91	66	78	+4	1.38	5	ļ	24.22	+9.80	52	1910	+173
Francesville	90	66	77	+5	2.79	4	ļ	20.25	+5.72	51	1872	+281
Valparaiso_AP_I	92	64	78	+6	1.48	3	_	19.39	+4.07	50	1912	+357
Wanatah	91	64	77	+6	1.77	3	801		+4.93	45	1799	+314
Winamac	92	67	78	+6	2.27	6	ļ	18.81	+4.28	54	1948	+357
North Central (2	•				4 65			45.56		4.0	1000	. 4 5 5
Plymouth	92	66	77	+4	1.65	4	ļ	17.56	+2.32	42	1836	+177
South_Bend	94	66	79	+6	3.32	4		18.15	+3.90	46	1904	+366
Young_America	90	65	77	+4	1.51	3	ļ	22.87	+8.89	42	1920	+295
Northeast (3)				_		_	ļ					
Fort_Wayne	95	67	80	+7	1.99	3	ļ	17.87	+4.67	45	2151	+536
Kendallville	93	64	78	+6	2.38	5	ļ	17.35	+3.39	60	1834	+315
West Central (4)												
Greencastle	90	66	77	+2	1.49	6		22.82	+6.41	52	1916	+72
Perrysville	92	67	79	+5	1.57	5	83		+6.98	47	2200	+474
Spencer_Ag	91	67	79	+5	2.21	5		26.01	+9.18	51	2083	+356
Terre_Haute_AFB	92	68	80	+5	4.32	6		25.03	+9.09	55	2277	+435
W_Lafayette_6NW	92	66	79	+6	1.45	4	81	21.41	+6.93	42	2060	+433
Central (5)	0.0	<i>-</i>	0.0		2 52			01 00	. 6 - 5 1	F 1	0010	. 106
Eagle_Creek_AP	92	69	80	+5	3.53	6		21.33	+6.51	51	2310	+486
Greenfield	93	67	79	+5	2.51	6	I	24.92	+8.75	53	2143	+406
Indianapolis_AP	93	69	81	+5	1.38	5	I	19.20	+4.38	45	2374	+550
Indianapolis_SE	92	67	78	+3	1.01	5	0.01	20.84	+5.48	48	2082	+280
Tipton_Ag	91	64	78	+5	2.58	4	80	22.27	+7.67	49	1977	+404
East Central (6)	0.2	C 0	7.0	+7	1 (5	-	ا	10 70	ı E 10	F.C	2010	. 401
Farmland	93	68 67	79		1.65	5	83		+5.18	56	2010	+481
New_Castle	90	6 /	77	+5	1.70	4	I	25.58	+9.65	49	1910	+347
Southwest (7) Evansville	96	70	83	+5	0 00	4	ı	11 00	2 67	42	2624	+476
Freelandville	93	67	81	+5	0.82	3		11.88 21.08	-3.67 +5.01	44	2364	+476
Shoals 8S	95	67	81	+6	1.72	3	I	21.00	+4.59	36	2186	+354
Stendal	95	70	83	+7	2.60	2	I	17.99	+0.74	37	2656	+650
Vincennes 5NE	97	67	81	+6	2.67	4	83		+6.67	48	2418	+511
South Central (8		0 /	01	+0	2.07	4	031		+0.07	40	2410	TJ11
Leavenworth	, 95	68	81	+7	2.76	5	ı	18.89	+1.36	60	2391	+563
Oolitic	91	66	79	+5	1.13	4	81		+6.00	49	2132	+389
Tell City	94	70	82	+5	1.13	5	0 T	18.06	+0.61	37	2546	+514
Southeast (9)	ノュ	, 0	02	1)	1.00	J	l I	10.00	.0.01	5 /	2340	. 711
Brookville	93	70	81	+7	1.23	5	l I	19.16	+3.37	47	2151	+512
Greensburg	93	68	81	+8	1.22	6	l I	19.95	+4.02	48	2337	+632
	92	67	80	+6	0.61	4		17.95	+2.10	42	2127	+368

Copyright 2010: Agricultural Weather Information Service, Inc. All rights reserved.

DFN = Departure From Normal.
GDD = Growing Degree Days.
Precipitation (Rainfall or melted snow/ice) in inches.
Precipitation Days = Days with precip of .01 inch or more.
Air Temperatures in Degrees Fahrenheit.

For more weather information, visit www.awis.com or call 1-888-798-9955.

Bacterial Stalk Rot of Corn

Written by Kiersten Wise. Article appears in the Pest & Crop, July 23, 2010 - Issue 17.

Slimy, discolored corn stalks are being observed in seed and dent corn fields around Indiana. Bacterial stalk rot, can be caused by several species of bacteria, but *Erwinia chrysanthemi* pv. *zeae* is likely the cause of many of the symptoms observed in Indiana. This stalk rot can periodically cause problems in Indiana corn, especially when hot, wet weather precedes tasseling.

Symptoms of bacterial stalk rot first appear as tan or brown, water-soaked spots on the leaf sheaths on the internodes of the stalk (Figure 1). Lesions can also form on the leaves, and infected plants wilt and collapse as the infection progresses through the stalks. The pith of infected plants will decay and be mushy or soft. Infected plants are typically scattered throughout a field or in small pockets within a field.

The bacterium that causes this stalk rot survives on residue and infects plants through natural openings on the plant, or wounds caused by heavy rain, high winds, hail damage, or insect feeding. High humidity and high temperatures (85 to 95°F) favor disease development. Plant-to-plant transmission of the bacterium is not common, except where high populations of insects are present.

Management of bacterial stalk rot depends on the type of corn and production system. In hybrid corn fields, cultivation to encourage residue decomposition can help reduce the level of bacteria in affected fields. In seed corn production, avoid excess overhead irrigation, and irrigation from ponds, rivers, or lakes that may harbor bacteria. Kocide 3000 is a fungicide/bactericide that is labeled for bacterial stalk rot management and this chemical may be an option to manage the disease in seed corn production, depending on the size of the affected area within a field.

The INDIANA CROP & WEATHER REPORT (USPS 675-770), (ISSN43-817X) is issued weekly April through November by the USDA, NASS Indiana Field Office, 1435 Win Hentschel Blvd, Suite 110, West Lafayette, IN 47906-4151. For information on subscribing, send request to above address. POSTMASTER: Send address change to the USDA, NASS, Indiana Field Office, 1435 Win Hentschel Blvd, Suite 110, West Lafayette, IN 47906-4151.

MEEKLY NEWS REPORT

FIRST-CLASS MAIL POSTAGE & FEES PAID USDA PERMIT NO. G-38 WEST LAFRYETTE IN 47906-4151 USDA, NASS, INDIANA FIELD OFFICE 1435 WIN HENTSHCEL BLVD, STE 110 MEST LAFRYETTE IN 47906-4151